
CSC301 Winter 2020

Assignment 1: Theatre Blocking
 Assignment Handout

Due date: Friday, Jan 31st by 11:59pm.
This assignment is done Pairs.

Overview
In this assignment, you will be combining Product Management skills with some web
programming to create a small web app.

Although you will be doing some coding and using web technologies, the focus is not on how
well you can code, or on how fancy you can make your project look.
It will be on how you define your users, work out a plan with them in mind, and then develop a
solution based on your well-thought out assumptions.

In the sections that follow, we will give you a specification of a particular app.
Most of your grade (80%) will come from following our specifications. However, to potentially
receive full marks, you will have to add some enhancements on top of the work you do. These
must also follow some rules we give you and should tie in to the course material.
This is in line with the Arts and Science guidelines for A+: "Strong evidence of original thinking;
good organization; capacity to analyze and synthesize; superior grasp of subject matter with
sound critical evaluations; evidence of extensive knowledge base."

Starter Files/GitHub Repo

First Steps
You must create your pair on Quercus by navigating to the ‘People’ tab, and clicking
‘Assignment 1 Pairs’. Only one team member should do this. Your partner can simply join the
pair on Quercus once you have created it. Please use the following team name and git repo
name structure: utorid1_utorid2_a1. You must create your team repository using the following
link: https://classroom.github.com/g/CpYl4iwZ

You will use this repository for assignment 1 only note that this repository is not related to
your project or other assignment. Note that the template (.md document) for running the
assignment will be pre-loaded in your assignment. You will be submitting your assignment
entirely on GitHub.

You will be responsible for ensuring that your repo is up to date (with your submission on the
master branch) at the time the assignment is due. You will be responsible for any delays
introduced if you do not join the course GitHub org in time.

CSC301 Winter 2020

We have provided you with a bunch of starter files on the master branch of the repo to help you
get started, with instructions on how to get things to work (particularly helpful if you haven’t done
any web programming before).

Specification: Theatre Blocking
When putting on a play in a theatre, it is important that everyone involved knows where the
actors are at any given point in the script.
Theatre Blocking is the concept of providing information (text and/or pictures) about where the
actors in the cast are supposed to be on stage during a particular part of the script.
Every theatre production has their own method for blocking, but there are some common
elements that we’ll apply for this assignment.
In order to properly block a scene, every line in the script should be mapped to the location of
the actors at that point.

For the purposes of this assignment, we will assume that actors can only be in one of 8
positions on the stage, and that at most one actor can take up a particular spot on stage:

Suppose we have two actors, actor A and B, and the following script:

“See you later A!I wonder where B is going..”

The blocking for these separate parts of the script are highlighted and indicated below:

A in position 2, B in position 6
A in position 3

Note that actor B is not on stage in the second script part (green) - this means that they have
left the stage between these two parts of the script - we do not need to specify the details of
what happened between parts for the purposes of blocking the scene.

8 7 6 5

1 2 3 4

CSC301 Winter 2020

Also, note that the blocking doesn’t say who is saying the line - just where the actors are on
stage.
The ability for the cast and the crew to have every scene blocked allows for a much easier time
during rehearsal - everyone knows the overall structure of the stage positions during any
particular point in the script.

You are tasked with creating a prototype web app for a theatre company that would like to be
able to block their production and share their blocking among the different members of the
production team.
As a smart software engineer, you aren’t just going to start coding right away and hoping that
they like what you have. You are going to use your Product Management skills to ensure that
you know what you are building, who you are building it for, and why you are building it.

There are many different people involved in a production team, and you can’t build a web app
that works for all of them right away. You need to be selective, and define a Minimum Viable
Product (MVP) - a product that has just enough functionality to be accepted by the user.
For the baseline requirements of this assignment, you will focus on two groups of users:
Actors and Directors.

When working with clients, you may often receive vague explanations of your project
requirements, and this should not surprise you! This case is also no different, the only
information you are given to start from the users is:

“Directors should be able to modify the blocking for all parts of the script,
and actors should be able to see the blocking for their parts.”

With this small (but powerful) piece of information in mind, it’s time to outline your tasks for this
assignment.

CSC301 Winter 2020

Your Tasks
Part 1: Product Management and User Analysis

Given the user statement above, you will go through the initial stages of Product Management,
including Goals and Requirements. (you should review the lecture notes and worksheets from
class to remind yourself of what is required as you go through the tasks).
Remember that you only need to consider the Actor and Director users and creating the parts
below.

1. Create an objective statement for your app.
2. Create three personas of potential users of the app.
3. Create three user stories for the app.
4. Write down the acceptance criteria for the user stories.

Add these elements to the README.md file under the headings:
objective statement
personas
user stories
acceptance criteria

In part 2, you will work with an example implementation of this app. Although you can see the
implementation, your user stories and acceptance criteria can still go beyond what you see in
the web browser - it is up to you to decide what the actor and director users will accept,
including features that may not currently show up in the web browser.

Part 2: Building a prototype Web App
Note: Do not start Part 2 until you have Part 1 done! You need to know what you are building
before you start building it.

You will create a prototype web app using Python Flask and Docker, and deployed to the web
using Heroku.
Note that we will be testing using Google Chrome, so please ensure you are using that
browser when making your assignment.

Instructions to get started

1. Clone the starter code from your repo. Make sure that you can run the Docker container
and that the site loads on localhost in Chrome.

○ Note that any time you make a change to your code, you will have to rebuild the
Docker container for those changes to take effect.

○ If you only open the HTML files in your browser without opening it through
localhost, the functionality will not work - it needs the server to run properly.

CSC301 Winter 2020

2. There are two html files (actor.html and director.html) in the app/static folder that each
represent the actor and director views, respectively. You can access them as files of a
static directory, using a URL such as localhost/actor.html

3. Have a look at the overall structure of the app folder:
○ static contains the HTML, CSS, and JavaScript files. You will only have to edit

the Javascript files.
○ main.py is the Python Flask server file. You will edit this file on the server side.
○ script_data is the folder where the scripts and their blocking persist on the

server. You can think of this as the ‘database’ of the scripts.
○ actors.csv A mapping of actor numbers to actor names

Chrome JavaScript Console
To test the JavaScript functions found in the file, open up the JavaScript Console in Google
Chrome (View -> Developer -> JavaScript Console).
If you want to test functions for actor.js, navigate to the actor.html page first - same with
director.js to director.html

In the next section, we will go over the files and how they are used in the app.

File descriptions

If you are new to web programming, you don’t have to worry - there is not too much code in the
JavaScript files, and we have included a lot of comments to help you out.
Most importantly, we have provided any functions that have to do with User Interface (UI). For
example, adding a block to the page is as simple as calling the addScriptPart() function.
Note: You cannot change these UI functions in the JavaScript functions. - you will lose a
lot of marks if you do.

actor.js is linked to actor.html, and there are functions that allow you add and remove script
parts on that page. There is also a function that shows an example of a call to a server - a
‘fetch’ call. The one in getExampleBlock() shows what happens when you click the Get
Example Block button in the HTML.
This fetch call is a GET request to the ‘/example’ route in the Python Flask server. Look at
main.py to see what that route returns to the client (the web browser). It is just an array of
information to place into the example block.
The fetch call might look a little strange if you haven’t seen it before - the overall structure (the
‘then()’ keyword) isn’t something you have to worry about (it’s a JavaScript Promise, if curious).
The only part of a GET fetch call you should be thinking about is the part with jsonResult,
which holds the JSON body of the response from the server. You can now access it in
JavaScript (in the example call, it is simply an array that is indexed to add the script part to the
browser window
For the director.html view, a director.js is also linked, with some similar but also some different
elements. In this case, there are also some example blocks, which also contain textboxes to

CSC301 Winter 2020

change the blocking of a script. You must fill in both the getBlocking and changeBlocking
functions with fetch calls to the server. changeBlocking requires a slightly different request - it
is a POST request, that will send along with it some data - the entire blocking of the script,
which is sent to the server so that it may update the text files properly. It will be your job to fill in
the part of the request that provides specific data to the server. How will you decide on the data
to send back and forth between the server and client? Read on..

Serializing using JSON data
As mentioned in class, data can be serialized using JSON, which is a standard in web
development because it can easily be converted between JSON string and JavaScript object (or
Python dictionary in the case of Flask).

The functions in the JavaScript files are given to you as is, and since the functions that do UI all
have specific parameters, you will have to ensure that your JSON objects have the right
properties to make your app work (this is similar to what happens in real life - you may get an
API that you can’t (or don’t have time to) change, so you have to work with what you’re given
and change only what you can change.
Your JSON must also limit redundant information (i.e. duplicate data over multiple
properties). You will be assessed on how you make your JSON objects.

JSON Task:
As part of your submission, provide examples of JSON objects you will use to serialize your the
data (you will have to keep reading this handout to see what other information you may need to
include in your JSON objects).
One for the GET requests that provide script blocking information, and one for the POST
requests (the JSON you are sending to the server). Save them as files in:

● script_get_data.json
● script_post_data.json

You should properly format the JSON and make sure it is valid:
https://jsonformatter.curiousconcept.com/

In your README.md under a #JSON files header, explain your choice for your JSON
serialization and why you chose it.

JSON API and Script files
Now that you’ve decided on how you’re going to serialize your data, you should create a way to
move this data around. There are two things to think about: requesting some JSON from the
browser, and sending it from the server.
In the Python Flask server, we can send a JSON object by first making a Python dictionary or
array, and calling jsonify() to make a JSON representation. Since you’ve decided on how your
JSON format looks, you should be able to send it back to the request origin (the user’s browser)

CSC301 Winter 2020

A request from the browser is made in javascript that lives on the browser side from the fetch()
calls explained above.

The script files persist in the script_data folder contain text files that the theatre has given you
(again, another example of having to work with what the user gives you). They contain the
script ID number, a newline, the script text in its entirety on one line, followed by a newline, and
then followed by the blocking for each part in the format:

<part_number>. <char_start>, <char_end>, <list of actors-position...>

Each line has the number of the part of the script, the start character and end character of the
full script text where the part is contained, and a list actor names and their positions from 1 to 8
(or 0 if the actor does not appear in that part).
In actor.html, you will notice that an Actor Number is required to see the blocking for a particular
actor. These can be found in the actors.csv file.

You can use Python file I/O functions to read and write to these files on the server side (file
explained below). If you mess up the script files, you can always re-download them (you
shouldn’t commit messed up files to the repo).
Just note that you must access the files from the ‘/app’ directory. (i.e. /app/actors.csv).
Flask Server (main.py)
On the server side of things, all routes for the app can be found in the main.py file.
You are responsible for modifying the code for the /script GET and POST routes. These will
include things like sending and receiving JSON, and reading and writing script files. Make sure
you understand the purpose of the routes before you start programming.
Test your routes often as you working and build them up to ensure they’re working correctly
every time you add a feature.

Postman
If you want to test that your routes work, you can use an app called Postman. It lets you make
calls to your JSON APIs without using a browser so you can test them more easily without
worrying about the frontend.

Enhancements!
20% of your grade will come from enhancements that you will create on top of the baseline
requirements and specification. This can be anything that adds to the assignment, and could
involve product management, serialization, or anything else we’ve talked about in class.
You can potentially look at different user groups that work in theatres to help start you off:

● https://en.wikipedia.org/wiki/List_of_theatre_personnel

Notes, this is not a web dev class, so the following will not count as an enhancement:
● Authentication will not count as an enhancement

CSC301 Winter 2020

● UI and general fanciness will not count for enhancements - no React or other frontend
templating engines should be used. If you do, small UI elements that create value for
your users are much better than fancy elements

Important Information - Please Read!
● Do not change the headers/body of any of the given JavaScript UI functions

○ If you want to add some UI elements, make separate functions that add them.
Regardless, we are not grading you on UI, so minimal additions are encouraged -
this is an MVP, after all.

CSC301 Winter 2020

Handing in your work
For the TAs to grade the functionality of your app, it must be deployed to
heroku. Get a free account on http://heroku.com and follow the instructions
in our starter README.md to create an app and push your Docker container to
it. You will lose many marks if you do not deploy your app.

Your utorid should appear in the app name. You must include the URL to your
heroku app in your README.md.

The code in your Github master branch must match the deployed app - you will
lose a lot of marks if this is not the case.

Grading
You will be graded on the following criteria.

● Objective Statement, User stories, Personas, Acceptance Criteria (25
marks): You need to clearly write down the objective statement, user
stories, personas, acceptance criteria you have decided to implement.

● JSON example files & explanation (10 marks)
● Code and Functionality (40 marks): Your code must work and be deployed

on Heroku. We will test it and look at your code to see your
implementation of the requirements.

● README.md (5 marks): Your README should be properly formatted and
organized.

● Enhancements and Enhancements.md (20 marks):
You need to clearly explain

○ What enhancements you have implemented
○ How to use them.
○ Why you have decided to add them, and how they relate to the

course material

