
Assignment 2: Pair Programming
 Assignment Handout

Due date: Sunday, March 8th by 11:59pm
This assignment is done in pairs. Note that you should have created your pairing before
starting the assignment.
If you haven’t done so by the deadline in our announcement, you will lose 5%.
Please email us ASAP if you still don’t have a pairing.

Overview
In this assignment, you will focus on some core elements of the process of producing software.
By completing this assignment, you will work on:

1. Pair programming
2. Testing
3. Clean Coding

Starter Files/GitHub Repo
You will be submitting your assignment entirely on GitHub.

You must create your pair on Quercus by navigating to the ‘People’ tab, and clicking
‘Assignment 2 Pairs’. Only one team member should do this. Your partner can simply join the
pair on Quercus once you have created it. Please use the following team name structure:
utorid1_utorid2. The words “assignment-2” will be prepended automatically to your repo name.
You must create your team repository using the following link:
https://classroom.github.com/g/oTaf1c9m

You will use this repository for assignment 2 only note that this repository is not related to
your project or other assignment. Note that the template (.md document) for running the
assignment will be pre-loaded in your assignment. You will be submitting your assignment
entirely on GitHub.

You will be responsible for ensuring that your repo is up to date (with your submission on the
master branch) at the time the assignment is due. You will be responsible for any delays
introduced if you do not join the course GitHub org in time.

Pair Programming
As we talked about in lecture, part of the prescriptions of some of the software processes we
looked at included Pair Programming.
In this assignment, you will perform a prescribed version of pair programming for two features
of the program. You only have to pair program as prescribed for these two features - for the
rest of the features it is up to you how you want to finish them with your partner. Here’s how
we’d like you to do pair programming:

● Decide roles (driver/navigator) and the feature to be developed (they should be big
enough to spend 2 to 3 hours thinking about implementation and then coding) . Together
break down the feature to multiple “checkpoints” and design the solution on paper.
Estimate how long it will take you to finish this feature with the proposed design. This
design will be the guide in coding your solution. Once you are happy with your design,
the driver (using their own GitHub account) starts coding the solution while the navigator
watches and helps whenever needed (no checking phones or going to get coffee).
After the allocated time is done (could be 30-90 minutes, you can take a break and
switch roles). Repeat this enough times until the feature is done. Experiment with
different variations to see what works best for you. You can then move on to the second
feature and switch starting roles.

○ This includes the tests for the features you chose - make sure they are pair
programmed as well.

● In your README.md
○ Should explain which features were pair programmed
○ Should explain who the driver and navigator was for different parts of the

features
○ Should give a reflection on how it went, and what you liked and disliked about

this process
● The commits should reflect who the driver was for each feature

○ Any work done on a particular feature should only be done by the driver for this
feature - we will check!

Specification: Pizza Parlour
For this assignment, you will be creating an API for a virtual pizza parlour, based on
some client requirements.
Unlike A1, there is not much starter code to start with - you will have to take the specifications of
the app, and use the concepts from class to write a Python program to make it work.
You will also write a command-line interface to demonstrate the functionality of your app

Going off of our theme that Software Development is not just coding, you will notice that the API
itself is not that difficult. We know that you can probably hack something together quickly that
more or less works most of the time.
However, that is not what professionals do. You will have to think about and reflect on why you
chose certain elements, including:

● How to represent objects
● The relationships between objects (coupling, cohesion)
● Design of functions
● Using design patterns effectively

○ You can use the ones we mentioned in class, or others
● Clean coding practices

The Starter Code
The starter code is meant to be set up as a Flask project in your IDE. You can start by running
main.py which will set up a simple server similarly to the ones shown during lectures and
tutorials. The starter code also comes with a file called unit_tests.py. You can use the
commands described in the Readme.md file included in the starter code.

There is only one Python file in the starter code, PizzaParlour.py, which will have the main
method that will start the program. Right now, there is a simple start to the command line
interface for a pizza customer to start ordering. You will have to add to it to fulfill the
requirements of the parlour below (you can replace the contents of the main method entirely as
well). We will run your code from this main method, so do not get rid of it.
The rest of the design is up to you!
You should make effective use of design patterns and unit tests that we talked about in class,
or others - you will be graded on program design!

Client requirements
Our customers (pizza parlour patrons) need to be able to do the following while the app is
running (we do not require external persistence in files apart from what’s listed below)

1. Submit a new order
○ With the following possible components (any number of them):

■ Pizza
● Size
● Type
● Toppings

■ Drinks
○ Order number
○ Pizza type can be (pepperoni, margherita, vegetarian, Neapolitan) and each one

of them will have a specific method of preparation (you can make your own
assumptions as to what goes on each type of pizza). Your program needs to
support adding new types of pizza as well.

○ Toppings can include (olives, tomatoes, mushrooms, jalapenos, chicken, beef,
pepperoni)

○ Drinks can be (Coke, Diet Coke, Coke Zero, Pepsi, Diet Pepsi, Dr. Pepper,
Water, Juice)

○ Please note that the total price will be calculated based on the order
■ Prices can be dynamically changed for any items

● You can store the prices for items in a file (persistence)
2. Update existing order:

○ Changing specific elements of a Pizza order, drinks, etc.
3. Cancel order
4. Ask for pickup or delivery

○ Pickup from store
○ Three ways to send delivery to a specific address

■ Pizza parlour’s in-house delivery person
■ Uber Eats: Accepts delivery details using the following information in

JSON:
 Address:
 Order Details:
 Order Number:

■ Foodora: Accepts delivery details using the following information in csv
 Address:
 Order Details:
 Order Number:

5. Ask for the menu using one of the following:
○ The full menu
○ Specific item where the user passes in the item name and the price is returned.

Testing
You will design tests (unit and integration) to test your code functionality.
It is up to you how you test your code, but in order to receive full marks, you should test with at
least 90% line coverage of the repo with meaningful tests and test names. You can learn
more about code coverage here.

Code Craftsmanship
You must have good programming and formatting style in your code. Review our lectures on
this to ensure you are creating high-quality, clean code.
You are free to use use tools like Linters, IDE tools, etc. to help you. Mention in your
README.md which tools you used to help you create clean code.

Handing in your work
We will grade the most recent version (and look at the commit history) of
your submission on the master branch of your pair’s repo.
Make sure everything is updated there, including your README.md

Grading
You will be graded on the following criteria.

● Pair Programming (15 marks):
○ Your process explained in README.md
○ Your commit history reflecting your process explanation
○ Your reflection about your process, including positives and

negatives
● Program design (20 marks)

○ The design patterns you chose to use
■ The description of why you chose to use them for your

implementation
○ Relationships between objects: code cohesion, coupling
○ Function design

● Functionality (25 marks): We will test it and look at your code to see
your implementation of the required features.

● Tests (20 marks)
○ Thorough testing of the required features
○ At least 90% line coverage of the repo with meaningful tests and

test names.
● Code Craftsmanship (10 marks)

○ Programming and formatting style is good
○ Let us know what tools you used (Linters, IDE tools, etc.)

● README.md explanation and organization (10 marks): Your README should
be well formatted and organized. The TA should be able to use your app
easily based on the instructions you provide.

